

Abstract—Web services are usually supported by a

database at the backend while a frontend takes input from the

user, construct SQL statements and access the database. SQL

injection is a popular technique used by attackers to exploit

unsanitized user input vulnerability by convincing the

application to run SQL code that it was not intended to run.

Validating all user inputs and checking for vulnerability can

be tedious on the part of the programmer. In this work we

propose a new approach to prevent SQL injection attack

using URL filtering. URL filters are used to validate user

input to web forms. In this approach a single filter can be used

to validate input to several databases which makes our

approach more scalable and efficient. We implement the filter

using Java servlet and demonstrate its effectiveness.

Index Terms—SOL injection attacks, prevention, URL

filtering.

I. INTRODUCTION

Web services have become hugely popular because it

allows an enterprise integration of its numerous Internet-

enabled applications. A web service can be remotely

triggered by a client using HTTP. Typically the client will

send a query, the web service will retrieve the relevant

information from an underlying database and send back the

response

The input from the client can be gathered using either the

input box present in the web form or the URL of that web

form. Next the application will use the input to construct a

SQL statement, query the database and send the response

back to the client.

Insufficient validation of user input can allow an attacker

to induce the application to run SQL code not intended by

the developer. Such attacks known as SQL injection (SQLI)

can allow an attacker unrestricted access to the databases

and thereby to potentially sensitive information. With a

myriad of techniques available to perform SQLI, sanitizing

the code can be tedious, cumbersome and time-consuming.

Many of the SQL injection vulnerabilities discovered in

real application are due to human errors. So developers

need to be very careful for their coding practice [3]. URL

Manuscript received July 30, 2012; revised September 18, 2012. This

work was supported in part by the Indian Institute of Technology Patna,

India.

Sangita Roy is with Computer Science and Engineering Department,

Indian Institute of Technology Patna, India, (e-mail: r_sangita@iitp.ac.in).

Avinash Kumar Singh was with KIIT University, Bhubaneswar,

Orissa, India. He is now with the Department of Computer Science, Indian

Institute of Information Technology Allahabad, India (e-

mail:rs110@iiita.ac.in).

Ashok Singh Sairam is with the Computer Science and Engineering

Department, Indian Institute of Technology Patna, (e-mail:

ashok@iitp.ac.in).

filters are commonly used by enterprises to block websites

with objectionable content. In this paper we propose to

translate the user input to an URL and use an URL filter to

validate the input. This will allow a developer to fully

concentrate on code development and leave the task of code

sanitization to the filter.

The paper is organized as follows. Section II defines

SQL Injection attack. Section III presents review of

different SQL Injection prevention mechanisms. In section

IV we present our URL filtering approach to prevent SQLI.

Section V shows the implementation details and the result

analysis. Conclusion and future work has been discussed in

section VI.

II. SQL INJECTION

SQL injection is a code injection mechanism in which

malicious code is inserted into the input point of a web

form to gain access to the database. The primary form of

SQL injection consists of direct insertion of code into user-

input variables that are concatenated with SQL commands

and executed. For example in the following code, the user

is prompted to enter a name. The script then builds a SQL

query by concatenating hard-coded strings together with a

string entered by the user.
var UserName;

UserName = Request.form("UserName");

var sql = "select * from UserTable where

UserName = ' " +UserName+" '";

In the above code if the user inputs
Raju'; drop table UserTable--

It will cause the database to delete the table UserTable.

An indirect attack injects malicious code into strings that

are destined for storage in a table or as metadata. When the

stored strings are subsequently concatenated into a dynamic

SQL command, the malicious code is executed. SQLI

occurs because SQL Server will execute all syntactically

valid queries that it receives [1].

III. SQL INJECTION PREVENTION MECHANISM

There are number of techniques available in literature to

address SQLI attacks. Here we review all the techniques

briefly with their advantages and disadvantages [2], [4], [7].

A. Defensive Coding Practices

The defensive coding is for the developer who is

responsible for developing the web application. As the

coding practice is very much prone to human error,

developers always give the extra effort to code safely. The

root cause of SQLI is the insufficient input validation and

sometimes developers forgot to add checks or did not

perform adequate input validation. So there are various

A Novel Approach to Prevent SQL Injection Attack Using

URL Filter

Sangita Roy, Avinash Kumar Singh, and Ashok Singh Sairam, Senior Member IACSIT

International Journal of Innovation, Management and Technology, Vol. 3, No. 5, October 2012

499DOI: 10.7763/IJIMT.2012.V3.284

guide lines proposed to fix this problem [5].

1) Input type checking

SQLI attacks can be performed by injecting commands

into either a string or numeric parameter. A simple check of

such inputs can prevent many attacks.

2) Encoding of inputs

Injection into a string parameter is often accomplished

through the use of meta-characters that trick the SQL

parser into interpreting user input as SQL tokens. So the

solution is to use the functions that encode a string in such

a way that all meta characters are specially encoded and

interpreted by the database as normal characters.

3) Positive pattern matching

Input validation should be able to identify all good inputs

as opposed to all bad inputs. Because the negative

validation is not always possible due to the new type of

attack signature. So better solution is to implement the

positive validation.

4) Identification of all input points
Developers must check all input points to their

application. There are many possible sources of input to an

application. If used to construct a query, these input sources

can be a way for an attacker to introduce an SQLIA.

Simply put, all input sources must be checked.

B. Black Box Testing

The web vulnerability scanner are used for the black box

testing, the vulnerability scanner are used for finding the

loop holes in the existing application. The vulnerability

scanner mainly visits the web application’s input point and

simulates the attack against and if the attack is possible or

made success then it summarizes it in the form of a report.

C. White Box Testing

The static code analyzers are used for the white box

testing, the static code analyzers basically analysis the byte

code of the web application with the intension of finding

the vulnerability.

D. Run Time Monitoring

For the run time monitoring IDS (Intrusion detection

System) can be used, the IDS system is based on a machine

learning techniques that is trained using a set of typical

application queries. The technique builds models of the

typical queries and then monitors the application at run

time to identify queries that do not match the model.

IV. PROPOSED TECHNIQUE

In this section we present the URL filter approach to

address the problem of SQLI. As shown in figure 2, by

filter we mean a program that runs on the server before the

servlet or JSP page with which it is associated. A filter can

be attached to one or more servlets or JSP pages and can

examine the request information going into these resources.

After doing so, it can choose among the following options

[8].

 Authentication-Blocking requests based on user

identity.

 Logging and auditing-Tracking users of a web

application.

 Image conversion-Scaling maps, and so on.

 Data compression-Making downloads smaller.

 Localization-Targeting the request and response to a

particular locale.

 XSL/T transformations of XML content-Targeting web

application responses to more than one type of client.

These are just a few of the applications of filters. There

are many more, such as encryption, tokenizing, triggering

resource access events, mime-type chaining, and caching.

The great advantage of using filter is that we can make a

single filter for many pages, so it enhance the reusability

and as well as scalability, the main concern of filter

designing is to provide security against the SQLI, generally

a attacker launch their attacks with the help of URL

modification, because of the in sanitized URL the request

directly goes to the database server and the database server

will act according that, so the little modification in the URL

an attacker can take control all over the application. By

placing filter between the database server and the request

we can actually secure the web application, and by the

reusability factor of the servlet we have to design only one

filter for all[6].

Fig. 1. Communication between filter and application server.

Fig. 1 shows that if any request will come for the page1,

page2 or any page in the application server then it first goes

to the filter then filter check the request if this the valid

request then it return back to the same page for that request

has come otherwise it divert the request to the default error

page, so any changes in the URL will not be considered as

the legitimate request and greet with the error page or any

message [9], [10].

E. Proposed Architecture

Fig tire web application architecture with filter

Our proposed architecutre is shown in figure 2. The

architecture consists of three major building blocks: the

clients who send the request, the application server where

the logic of the program will be decided and the database

server which can store the clients’ data for the future use. In

normal 3-tier web application architecture there is no filter

International Journal of Innovation, Management and Technology, Vol. 3, No. 5, October 2012

500

. 2. A simple 3-

deployed in application server. The work flow diagram of

our proposed model is shown in figure 3. The request from

the client is intercepted by the application server and the

requested url is send as an input to the filter. The filter

checks the URL filter database and if it is a valid url then it

returns success to the application server else an error

message is displayed. On getting a success response from

the filter the application servers constructs the

corresponding SQL query and directs it to the appropriate

database.

Fig. 3. Work flow diagram of proposed model

F. Filter Design

In this section we show how to design a simple filter

using Java code. The input to the filter is the request url

from the application server. The steps involved in designing

the filter are outlined below:

Step1: Get url request from application server

HttpServletRequest req1 = (HttpServletRequest)req;

Step2: Construct query from the given url and check

whether it is valid

String qry = req1.getQueryString();

ResultSet rs=stmt.executeQuery("select * from fil_url");

//selecting all input fom database

while(rs.next()) {

 String x=rs.getString("input");

 if (qry.compareTo(x) == 0) // if both matched

chain.doFilter (req, res); //valid query

else

res1.sendRedirect("/avinash/error.html"); // invalid query,

divert to error page

G. Filter Mapping

 We have to little modification in web.xml file which

are as following.

<filter>

 <filter-name>fil</filter-name>

 <filter-class>filter</filter-class>

 </filter>

<filter-mapping>

 <filter-name>fil</filter-name>

<url-pattern>/*</url-pattern>//this will map all url in the

web application

</filter-mapping>

V. RESULT AND ANALYSIS

Fig. 4. Original web page without putting any command on URL

Fig. 5. Web page with the command on URL and the result without using

filter.

Fig. 6. Web page with the command on URL and the result using filter.

Fig. 4 shows the original web page with the url

http://127.0.0.1:8082/avinash/filtercheck?t1=Hopes, which

is our input point here. In this url the query string is

t1=Hopes, which means that this filtercheck page will

display the records from the database which have the values

Hopes. The query will be represented like this: SELECT *

FROM poems WHERE title= ‘Hopes’; Figure 5 shows the

case where the attacker has fired a SQLI attack. The url is

http://127.0.0.1:8082/avinash/filtercheck?t1=’or’1’=’1. The

corresponding SQL query will beSELECT * FROM poems

International Journal of Innovation, Management and Technology, Vol. 3, No. 5, October 2012

501

WHERE title= ‘OR ‘1’=’1; If the url is not sanitized then

all the records in the table poems will be displayed.

Attacker can also put other query string like

http://127.0.0.18082/avinash/filtercheck?t1=Hopes order by

n. The query will be executed like this: SELECT * FROM

poems WHERE title=’Hopes’ ORDER BY n; here n is the

integer value and will be used to find columns.

Fig. 6 shows the result where we have prevented all

these type of SQL queries through filter which redirects

towards an error page rather than the requested page.

We have implemented a filter which can successfully

work with any version of Java servlet. For the deployment

we have used localhost of apache server. Similarly we can

map it globally. The current filter design is fully and

perfectly able to block SQL injection attack without any

complexity.

We have implemented it only on jsp and servlet. When

the web page is designed using jsp our approach is fully

able to block the SQLI attack. With the current approach on

defensive coding practice where a developer has to check

the all input points to validate it, our approach will takes

less time for validation. The developer only needs to

concentrate on the filter database.

In the current three tier approach, if any new page is

added to the web application the developer need to write

another new code for validation. However, using the

filtering approach the developer only need to update the

database.

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a model to prevent SQLI using

a simple url filter. The approach though simple is robust as

it isolates the actual database from the attacker. A

developer only needs to concentrate on the filter to validate

inputs from clients. The approach is scalable because only

the url database needs to updated as new pages get added.

The approach was test using Java servlet. As future work

we propose to implement this approach for different web

development languages like PHP and ASP. We also plan to

test the filter comprehensively against the various types of

SQLI attacks.

REFERENCES

[1] W. G. J. Halfond, Jeremy Viegas, and Alessandro Orso, “A

Classification of SQL Injection Attacks and Countermeasures,” in

Proc. The Proceeding of the IEEE International Symposium on

Secure Software Engineering Arlington,VA,USA, March 2006.

[2]

[3]

[4]

[5]

G.

J.

W.

Halfond, Alessandro Orso, and Panagiotis

Manolios,

“WASP: Protecting Web Applications Using Positive Training and

Syntax-Aware Evaluation,” in

Proc.

IEEE Transaction on Software

Engineering

(TSE 07), vol. 34, pp. 65-81, Jan-Feb 2008.

[6]

[7]

M. Muthuprasanna, Ke Wei, and Suraj Kothari, “Eliminating SQL

Injection Attacks -

A Transparent Defense Mechanism,” in

Proc.

the

International Symposium on Web Site Evolution

(WSE 06), pp. 22-30,

Sept 2006.

[8]

The essentials of Filters. (2010). [Online]. Available:

http://www.oracle.com/technetwork/java/filters-137243.html

[9]

M86 Security. (2010). Six Steps for Implementing an Effective Web

Security Solution. White paper. [Online]. Available:

http://www.m86security.com/documents/pdfs/white_papers/business

/WP_Six_Steps_for_Effective_Web_Security.pdf.

[10]

Osterman Research. The Critical Need to Secure the Web in Your

Company. (2010). White paper, Webroot, Inc.,

[Online]. Available:

http://www.ostermanresearch.com/whitepapers/or_or0210a.pdf.

Sangita Roy

obtained her B.Tech degree from West

Bengal University of Technology, India in the year

2005. She obtained her M.tech degree from Kalinga

Institute of Industrial Technology, Bhubaneswar,

Orissa in 2008. Currently she is pursuing her Ph.D

degree from Indian Institute of Technology, Patna.

Prior to this she was working as an Assistant

Professor at Kalinga Institute of Industrial

Technology, Bhubaneswar, Orissa. Her research

interests include steganography, web application security and network

security.

Avinash Kumar Singh

obtained his B.Sc(IT) and

M.Sc(IT) degree from Kumaun University, Nanital

in the year of 2007 and 2009 respectively. He has

received his M.Tech degree from Kalinga Institute

of Industrial Technology in the year of 2011. He

worked as an Assistant professor in Gwalior

Engineering College, Gwalior. Currently he is

pursuing his Ph.D degree from Indian Institute of

Information Technology,Allahabad. His research

interests include web application security and network security and

Biometric. He is also a certified Ethical Hacker.

Dr. Ashok Singh Sairam

obtained his B.Tech

degree from National Institute of Technology

Silchar, India in the year 1993. He obtained his

M.Tech and Ph.D degree

from Indian Institute

Technology Guwahati, India in 2001 and 2009

respectively. Currently he is working as an

Assistant Professor at Indian Institute of

Technology Patna, India. Prior to this he was

working as a senior research officer at Indian

Institute Technology Guwahati, India. His research interests include

network security, wireless networks and traffic engineering. He is

currently working as a chief invesstigator on a major network security

project sponsored by the department of Information Technology,

government of India. He has given invited lectures

and served as PC

member in several international conferences.

International Journal of Innovation, Management and Technology, Vol. 3, No. 5, October 2012

502

A. Tajpour, M. Massrum, and M. Zaman Heydary, “Comparison of

SQL Injection Detection and Prevention Techniques,” in Proc. The

Proceeding of the 2nd International Conference on Education

Technology and Computer (ICETC 10), vol. 5, pp. 174-179, June

2010.

N. Antunes and M. Vieria, “Comparing the Effectiveness of

Penetration Testing and Static Code analysis on the Detection of

SQL Injection Vulnerabilities in Web Services,” in Proc. 15th

Pacific Rim International Symposium Dependable Computing, pp.

301-306, 2009.

K. Amirtahmasebi, S. R. Jalalinia, and S. Khadem, “A survey of

SQL Injection Defense Mechanisms,” in Proc. the International

Conference for Internet Technology and secured transaction

(ICITST 2009), Nov 2009.

S. Nanda, L. Lam, and T. Chiueh, “Web Application Attack

Prevention for Tiered Internet Services,” in Proc. the Fourth

International Conference on Information Assurance and Security

(IAS 08), pp. 186-192, Sept 2008.

