
  

  
Abstract—Software estimation accuracy is one of the greatest 

challenges for software developers. Formal effort estimation 
models, like Constructive Cost Model (COCOMO) are limited 
by their inability to manage uncertainties and impression 
surrounding software projects early in the project development 
cycle. A software effort estimation model which adopts a soft 
computing technique provides a solution to adjust the uncertain 
and vague properties of software effort drivers. In this paper, 
COCOMO is used as algorithmic model and an attempt is being 
made to validate the soundness of artificial neural network 
technique using NASA project data. The main objective of this 
research is to investigate the effect of crisp inputs and soft 
computing technique on the accuracy of system’s output when 
proposed model applied to the NASA dataset derive the 
software effort estimates. Proposed model validated by using 85 
NASA project dataset. Empirical results show that application 
of the ANN model for software effort estimates resulted in 
slightly smaller mean magnitude of relative error (MMRE) and 
probability of a project having a relative error of less than or 
equal to 0.25 as compared with results obtained with 
COCOMO  is improved by approximately 17.54%. 
 

Index Terms— Artificial neural network, COCOMO, soft 
computing, effort estimation, mean magnitude of relative error.  
 

I. INTRODUCTION 
Accurate Software development effort estimations are 

always supposed to be a critical task to both developers and 
customers. Underestimating the costs of projects may result 
in exceeding total budget, with underdeveloped functions 
and poor quality, which may cause delay in projects 
completion. Overestimating may result in too many 
additional resources committed to the project, or, during 
contract bidding, result in losing the contract due to over cost, 
which can ultimately lead to loss of jobs. So accurate cost 
estimation is important and software cost estimation involves 
the determination of effort (usually in person-months), 
project duration (in calendar time) and cost (in dollars) [1].  

Software development effort estimation deals with the 
prediction of the probable amount of time and cost required 
to complete the specific development task. Generally, 
software development effort estimations are based on the 
prediction of size of software, which is a very difficult task in 
the sense that estimates obtained at the early stages of 
development life cycle are inaccurate because not much 
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information of the system is available at initial stage of 
project development. These estimations are essential for 
software developers and their companies, because it can 
provide cost control, delivery accuracy, among many other 
benefits for them [2]. 

Now a days, many quantitative models of software cost 
estimation have been developed. Most of these models are 
based on the size measure, such as Lines of Code (LOC) and 
Function Point (FP), obtained from size estimation. It is 
obvious that the accuracy of size estimation directly impacts 
the accuracy of cost estimation. Based on this context, new 
alternative approach in soft computing techniques such as 
artificial neural networks (ANN) can be a good choice to 
estimate task effort in software development. 

A review of the literature revealed that there are two major 
types of cost estimation methods Algorithmic and Non 
algorithmic models as discussed in various papers [3, 4, 5, 6, 
7, 8, 9, 10, and 11]. 

 

II. ABOUT THE PROBLEM 

A. Problem Statement 
Understanding and calculation of models based on 

historical data are difficult due to inherent complex 
relationships between the related attributes, are unable to 
handle categorical data as well as lack of reasoning 
capabilities Besides, attributes and relationships used to 
estimate software development effort could change over time 
and differ for software development environments. In order 
to address and overcome to these problems, a new model 
with accurate estimation will be considerable. 
We have taken the problem based on algorithmic model i.e. 
COCOMO into account.  

B. Algorithmic Models 
Some of the famous algorithmic models are: Boehm’s 

COCOMO’81, II [14], Albrecht’s Function Point [12, 13] 
and Putnam’s [14] SLIM. All of these require inputs, 
accurate estimate of specific attributes, such as Line Of Code 
(LOC), number of user screen, interfaces and complexity, 
which are always difficult to acquire during the early stage of 
software development.  

1) The COCOMO  
The COCOMO is a regression based software cost 

estimation model. It was developed by Boehm [13,14] in 
1981 and thought to be the most cited, best known and the 
most plausible [15] of all traditional cost prediction models. 
COCOMO can be used to calculate the amount of effort and 
the time schedule for software projects. COCOMO 81 was a 
stable model on that time. One of the problems with using 
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COCOMO 81 today is that it does not match the development 
environment of the late 1990’s. Therefore, in 1997 
COCOMO II was published and was supposed to solve most 
of those problems. COCOMO II has three sub models, which 
are different from those of COCOMO 81. 

The limitations of the algorithmic models led to the 
exploration of the non-algorithmic techniques which are soft 
computing based.  

 

III. SOLUTION OF THE PROBLEM 
Non-algorithmic models: In 1990’s non-algorithmic 

models have been proposed to project cost estimation. 
Software researchers have turned their attention to new 
approaches that are based on soft computing such as artificial 
neural networks, fuzzy logic models and genetic algorithms. 
Neural networks are able to generalize from trained data set. 
A set of training data, a specific learning algorithm makes a 
set of rules that fit the data and fits previously unseen data in 
a rational manner (16, 17, 18]. Some of early works show that 
neural networks are highly applicable to cost estimation [19, 
20]. Fuzzy logic offers a powerful linguistic representation to 
represent imprecision in inputs and outputs, besides 
providing a more knowledge based approach to model 
building. Hodgkinson and Garratt represented that estimation 
by expert judgment was better than all regression based 
models [21]. However, there is still much uncertainty as to 
what prediction technique is appropriate to which type of 
prediction problem [22]. 

Choosing a suitable technique is a difficult decision that 
requires the support of a well-defined evaluation scheme to 
rank each prediction technique as and when it is applied to 
any prediction problem. In the present study an effective 
model based on ANN has been proposed to overcome the 
uncertainly problem and to acquire better results. 

 

IV. PROPOSED APPROACH FOR SOLVING PROBLEM 
In our case we have used feed forward back propagation 

neural network to solve the problem that will be considered 
in this section in detail. 

A. Dataset Description  
We have considered the source data from 93 NASA 

projects from different centers for projects in years 1971 
-1987 Collected by Jairus Hihn, JPL, NASA, Manager SQIP 
Measurement & Benchmarking Element. Dataset consists of 
15 cost drivers, 3 attribute development modes as single input 
unit, Project Size (in KLOC), Estimated Efforts as output. 

B. Proposed Algorithm:  
Before applying the proposed algorithm, the neural 

network is trained in four stages by using feed forward back 
propagation algorithm for the experimental Data (NASA 
dataset in the case) viz. 

The steps involved in the algorithm are as follows: 

Step 1:-Initialize weights to small random Values. 
Step 2:-While stopping condition is false, do steps 3 – 10. 
Step 3:-For each training pair do steps 4-9. 

Step 4:-Each input unit receives the input signal xi and 
transmits this signals to all units in the layer above i.e. 
Hidden units. 

Step 5:-Each hidden unit(zj , j=1,……,p) sums its  
weighted input signals  

∑
=

n

i
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vx
1

ojinj-
 + v=z   

Next, the BINARY SIGMOIDAL function )f(z=z jin j is 

applied to all units in the layer above i.e. output units. 
Step 6:-Each output unit (yk , k=1,……..,m) sums its 

weighted input   signals,  
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and applies its  BINARY SIGMOIDAL function  to 

calculate the output signals. 
)f(y=Y ink-

 

Step 7:-Each output unit( yk , k=1,………,m)    receives a 
target pattern corresponding  to an input pattern, error 
information  term is calculated as  

)()( inkkkk yfyt −−=δ  

 Step 8:-Each hidden unit (zj , j=1,……...,n) sums its 
delta inputs from units in the  layer above 
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 The error information term is calculated as      
)( injinkj zf −−= δδ  

 

Step 9:-Each output unit (yk , k=1,…….,m)   updates its 
bias and weights  (j=0,…….,p) 

The weight correction term is given by  

jkjk zW αδ=Δ  

And the bias correction term is given by  

kokW αδ=Δ
 

Therefore,  

jkjkjk WoldWnewW Δ+Δ=Δ )()(
 

okokok WoldWnewW Δ+Δ=Δ )()(
 

  Each hidden unit (zj , j=1,………,p) updates its bias and 
weights (i=0, ………,n). 

The weight correction term       

ijij xV αδ=Δ
 

 And bias correction term 

jojV αδ=Δ

 

 Therefore,  

ijijij VoldVnewV Δ+Δ=Δ )()(

 

ojojoj VoldVnewV Δ+Δ=Δ )()(

 

 Step 10:- Test the stopping condition. 
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(1) Initialization of weights 

(2)Feed Forward 

(3) Back Propagation of errors 

(4) Updation of weight and biases 



  

V. RESULT AND DISCUSSION 
Initially training has been implied by considering 93 

datasets of different NASA projects where 17 inputs and 1 
output are made available for the purpose. Test data is taken 
from NASA dataset as input for testing the performance of 
trained network. 

Following Parameters are used for training the network: 
Model: Back propagation Neural Network 

Hidden Layers: 3 
Layer 1: 20 Neurons 
Layer 2: 15 Neurons 
Layer 3: 10 Neurons 
Persistence: 200 
Learning Rate: 
a. Alpha: 0.9 
b. Initial eta: 0.3 
c. High eta: 0.1 
d. Eta decay: 30 
e. Low eta: 0.01 
Iterations: 50,000 
Accuracy: 95.71% 
Prevent over training sample: 50% 
COCOMO describes 15 cost drivers in which cost drivers 

are rated on a scale from Very Low to Extra High. Efforts in 
COCOMO are given as:  

Ei =a*(Project Size)b*EAF  
Where a, and b depend upon the development mode of the 

project. Project Size is in KLOC. 
EAF is the Effort Adjustment factor based 15 cost drivers. 

 
TABLE I: CONSTANT FOR DIFFERENT PROJECT DEVELOPMENT MODES 

. 
 

VI. EVALUATION METHOD 
The value of an effort predictor can be reported many ways 

including Mean Magnitude of Relative Error (MMRE) and 
probability of a project having a relative error of less than or 
equal to L (PRED(L)). MMRE and PRED(L) are the most 
widely accepted evaluation criteria For evaluating the 
different software effort estimation. 

MMRE and PRED are computed from the relative error, or 
RE, which is the relative size of the difference between the 
actual and estimated value of individual effort i : 
 

REi = (predicted efforti – actual efforti) /(actual efforti) 
 

The magnitude of relative error [23] has been calculated by 
taking the absolute value of that relative error that is, 
 

MREi = abs(REi) 
The MRE value is calculated for each observation i of 

actual and predicted effort. The aggregation of MRE over 
multiple observations (N) can be achieved through the Mean 
MRE (MMRE) as follows: 

∑=
N

i
iMRE

N
MMRE 1

  

A complementary criterion is the prediction at level L, 
Pred(L) = k/N, where k is the number of observations where 
MRE is less than or equal to L and N is the total number of 
observations. Thus, Pred(25) gives the percentage of projects 
which were predicted with a MRE less than or equal to 0.25. 
 

TABLE II COMPARISON OF PERFORMANCE BETWEEN BPN MODEL AND 
COCOMO  

 
 

 
Fig. 1. MRE graph. 

 
Fig. 1 depicts comparison made between 85 results 

produced by test data for proposed model and corresponding 
data set for COCOMO as well. We can observe by the Fig.-1 
that MRE by proposed model is always kept near to the mean 
of MRE which shows the accuracy of the model. But in case 
of COCOMO, there are few spikes with high MRE which 
show the inconsistency in the evaluation of efforts. 

 
Fig. 2. Effort comparison graph. 

 
Fig. 2 shows the efforts applied with each project during 

its development. In our case we considered three different 
sets of efforts that are actual results obtain from NASA 
datasets, COCOMO results calculating by NASA input data 
sets, and proposed results are calculated NASA input data 
sets. 
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VII. CONCLUSION 
This paper presented a new model for handling 

imprecision and uncertainty by using the artificial neural 
network system. This work has further shown by evaluating 
algorithmic and non algorithmic software effort estimation 
models that accurate effort estimation is possible. The 
proposed model showed better software effort estimates in 
view of the MMRE, Pred(0.25) evaluation criteria as 
compared to the traditional COCOMO. 

It can be observed in Fig.-2 that most of the efforts 
calculated by proposed models are overlapping with two 
other methods generated results, which demonstrates that 
applying proposed model to the software effort estimation is 
a feasible approach to address the problem of uncertainty and 
vagueness in software effort drivers. Furthermore, the 
proposed model presents better estimation accuracy as 
compared to the NASA dataset. The utilization of soft 
computing approach for other applications in the software 
engineering field can also be explored in the future. 
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