

Abstract—Software estimation accuracy is one of the greatest

challenges for software developers. Formal effort estimation
models, like Constructive Cost Model (COCOMO) are limited
by their inability to manage uncertainties and impression
surrounding software projects early in the project development
cycle. A software effort estimation model which adopts a soft
computing technique provides a solution to adjust the uncertain
and vague properties of software effort drivers. In this paper,
COCOMO is used as algorithmic model and an attempt is being
made to validate the soundness of artificial neural network
technique using NASA project data. The main objective of this
research is to investigate the effect of crisp inputs and soft
computing technique on the accuracy of system’s output when
proposed model applied to the NASA dataset derive the
software effort estimates. Proposed model validated by using 85
NASA project dataset. Empirical results show that application
of the ANN model for software effort estimates resulted in
slightly smaller mean magnitude of relative error (MMRE) and
probability of a project having a relative error of less than or
equal to 0.25 as compared with results obtained with
COCOMO is improved by approximately 17.54%.

Index Terms— Artificial neural network, COCOMO, soft
computing, effort estimation, mean magnitude of relative error.

I. INTRODUCTION
Accurate Software development effort estimations are

always supposed to be a critical task to both developers and
customers. Underestimating the costs of projects may result
in exceeding total budget, with underdeveloped functions
and poor quality, which may cause delay in projects
completion. Overestimating may result in too many
additional resources committed to the project, or, during
contract bidding, result in losing the contract due to over cost,
which can ultimately lead to loss of jobs. So accurate cost
estimation is important and software cost estimation involves
the determination of effort (usually in person-months),
project duration (in calendar time) and cost (in dollars) [1].

Software development effort estimation deals with the
prediction of the probable amount of time and cost required
to complete the specific development task. Generally,
software development effort estimations are based on the
prediction of size of software, which is a very difficult task in
the sense that estimates obtained at the early stages of
development life cycle are inaccurate because not much

Manuscript received April 1, 2012; revised May 10, 2012.
B. K. Singh is research scholar in the Department of Computer Science &

Engineering, Motilal Nehru National Institute of Technology, Allahabad,
India (e-mail: brajesh1678@yahoo.com).

Dr. A. K. Misra is working as professor in the Department of Computer
Science & Engineering, Motilal Nehru National Institute of Technology,
Allahabad, India(e-mail: akm@mnnit.ac.in).

information of the system is available at initial stage of
project development. These estimations are essential for
software developers and their companies, because it can
provide cost control, delivery accuracy, among many other
benefits for them [2].

Now a days, many quantitative models of software cost
estimation have been developed. Most of these models are
based on the size measure, such as Lines of Code (LOC) and
Function Point (FP), obtained from size estimation. It is
obvious that the accuracy of size estimation directly impacts
the accuracy of cost estimation. Based on this context, new
alternative approach in soft computing techniques such as
artificial neural networks (ANN) can be a good choice to
estimate task effort in software development.

A review of the literature revealed that there are two major
types of cost estimation methods Algorithmic and Non
algorithmic models as discussed in various papers [3, 4, 5, 6,
7, 8, 9, 10, and 11].

II. ABOUT THE PROBLEM

A. Problem Statement
Understanding and calculation of models based on

historical data are difficult due to inherent complex
relationships between the related attributes, are unable to
handle categorical data as well as lack of reasoning
capabilities Besides, attributes and relationships used to
estimate software development effort could change over time
and differ for software development environments. In order
to address and overcome to these problems, a new model
with accurate estimation will be considerable.
We have taken the problem based on algorithmic model i.e.
COCOMO into account.

B. Algorithmic Models
Some of the famous algorithmic models are: Boehm’s

COCOMO’81, II [14], Albrecht’s Function Point [12, 13]
and Putnam’s [14] SLIM. All of these require inputs,
accurate estimate of specific attributes, such as Line Of Code
(LOC), number of user screen, interfaces and complexity,
which are always difficult to acquire during the early stage of
software development.

1) The COCOMO
The COCOMO is a regression based software cost

estimation model. It was developed by Boehm [13,14] in
1981 and thought to be the most cited, best known and the
most plausible [15] of all traditional cost prediction models.
COCOMO can be used to calculate the amount of effort and
the time schedule for software projects. COCOMO 81 was a
stable model on that time. One of the problems with using

Brajesh Kumar Singh and A. K. Misra

An Alternate Soft Computing Approach for Efforts
Estimation by Enhancing Constructive Cost Model in

Evaluation Method

272

International Journal of Innovation, Management and Technology, Vol. 3, No. 3, June 2012

COCOMO 81 today is that it does not match the development
environment of the late 1990’s. Therefore, in 1997
COCOMO II was published and was supposed to solve most
of those problems. COCOMO II has three sub models, which
are different from those of COCOMO 81.

The limitations of the algorithmic models led to the
exploration of the non-algorithmic techniques which are soft
computing based.

III. SOLUTION OF THE PROBLEM
Non-algorithmic models: In 1990’s non-algorithmic

models have been proposed to project cost estimation.
Software researchers have turned their attention to new
approaches that are based on soft computing such as artificial
neural networks, fuzzy logic models and genetic algorithms.
Neural networks are able to generalize from trained data set.
A set of training data, a specific learning algorithm makes a
set of rules that fit the data and fits previously unseen data in
a rational manner (16, 17, 18]. Some of early works show that
neural networks are highly applicable to cost estimation [19,
20]. Fuzzy logic offers a powerful linguistic representation to
represent imprecision in inputs and outputs, besides
providing a more knowledge based approach to model
building. Hodgkinson and Garratt represented that estimation
by expert judgment was better than all regression based
models [21]. However, there is still much uncertainty as to
what prediction technique is appropriate to which type of
prediction problem [22].

Choosing a suitable technique is a difficult decision that
requires the support of a well-defined evaluation scheme to
rank each prediction technique as and when it is applied to
any prediction problem. In the present study an effective
model based on ANN has been proposed to overcome the
uncertainly problem and to acquire better results.

IV. PROPOSED APPROACH FOR SOLVING PROBLEM
In our case we have used feed forward back propagation

neural network to solve the problem that will be considered
in this section in detail.

A. Dataset Description
We have considered the source data from 93 NASA

projects from different centers for projects in years 1971
-1987 Collected by Jairus Hihn, JPL, NASA, Manager SQIP
Measurement & Benchmarking Element. Dataset consists of
15 cost drivers, 3 attribute development modes as single input
unit, Project Size (in KLOC), Estimated Efforts as output.

B. Proposed Algorithm:
Before applying the proposed algorithm, the neural

network is trained in four stages by using feed forward back
propagation algorithm for the experimental Data (NASA
dataset in the case) viz.

The steps involved in the algorithm are as follows:

Step 1:-Initialize weights to small random Values.
Step 2:-While stopping condition is false, do steps 3 – 10.
Step 3:-For each training pair do steps 4-9.

Step 4:-Each input unit receives the input signal xi and
transmits this signals to all units in the layer above i.e.
Hidden units.

Step 5:-Each hidden unit(zj , j=1,……,p) sums its
weighted input signals

∑
=

n

i
iji

vx
1

ojinj-
 + v=z

Next, the BINARY SIGMOIDAL function)f(z=z jin j is

applied to all units in the layer above i.e. output units.
Step 6:-Each output unit (yk , k=1,……..,m) sums its

weighted input signals,

∑
=

n

j
jkj wz

1
okink-

 + w=y

and applies its BINARY SIGMOIDAL function to

calculate the output signals.
)f(y=Y ink-

Step 7:-Each output unit(yk , k=1,………,m) receives a
target pattern corresponding to an input pattern, error
information term is calculated as

)()(inkkkk yfyt −−=δ

 Step 8:-Each hidden unit (zj , j=1,……...,n) sums its
delta inputs from units in the layer above

∑
=

− =
m

k
jkjink w

1
δδ

 The error information term is calculated as
)(injinkj zf −−= δδ

Step 9:-Each output unit (yk , k=1,…….,m) updates its
bias and weights (j=0,…….,p)

The weight correction term is given by

jkjk zW αδ=Δ

And the bias correction term is given by

kokW αδ=Δ

Therefore,

jkjkjk WoldWnewW Δ+Δ=Δ)()(

okokok WoldWnewW Δ+Δ=Δ)()(

 Each hidden unit (zj , j=1,………,p) updates its bias and
weights (i=0, ………,n).

The weight correction term

ijij xV αδ=Δ

 And bias correction term

jojV αδ=Δ

 Therefore,

ijijij VoldVnewV Δ+Δ=Δ)()(

ojojoj VoldVnewV Δ+Δ=Δ)()(

 Step 10:- Test the stopping condition.

273

International Journal of Innovation, Management and Technology, Vol. 3, No. 3, June 2012

(1) Initialization of weights

(2)Feed Forward

(3) Back Propagation of errors

(4) Updation of weight and biases

V. RESULT AND DISCUSSION
Initially training has been implied by considering 93

datasets of different NASA projects where 17 inputs and 1
output are made available for the purpose. Test data is taken
from NASA dataset as input for testing the performance of
trained network.

Following Parameters are used for training the network:
Model: Back propagation Neural Network

Hidden Layers: 3
Layer 1: 20 Neurons
Layer 2: 15 Neurons
Layer 3: 10 Neurons
Persistence: 200
Learning Rate:
a. Alpha: 0.9
b. Initial eta: 0.3
c. High eta: 0.1
d. Eta decay: 30
e. Low eta: 0.01
Iterations: 50,000
Accuracy: 95.71%
Prevent over training sample: 50%
COCOMO describes 15 cost drivers in which cost drivers

are rated on a scale from Very Low to Extra High. Efforts in
COCOMO are given as:

Ei =a*(Project Size)b*EAF
Where a, and b depend upon the development mode of the

project. Project Size is in KLOC.
EAF is the Effort Adjustment factor based 15 cost drivers.

TABLE I: CONSTANT FOR DIFFERENT PROJECT DEVELOPMENT MODES

.

VI. EVALUATION METHOD
The value of an effort predictor can be reported many ways

including Mean Magnitude of Relative Error (MMRE) and
probability of a project having a relative error of less than or
equal to L (PRED(L)). MMRE and PRED(L) are the most
widely accepted evaluation criteria For evaluating the
different software effort estimation.

MMRE and PRED are computed from the relative error, or
RE, which is the relative size of the difference between the
actual and estimated value of individual effort i :

REi = (predicted efforti – actual efforti) /(actual efforti)

The magnitude of relative error [23] has been calculated by
taking the absolute value of that relative error that is,

MREi = abs(REi)
The MRE value is calculated for each observation i of

actual and predicted effort. The aggregation of MRE over
multiple observations (N) can be achieved through the Mean
MRE (MMRE) as follows:

∑=
N

i
iMRE

N
MMRE 1

A complementary criterion is the prediction at level L,
Pred(L) = k/N, where k is the number of observations where
MRE is less than or equal to L and N is the total number of
observations. Thus, Pred(25) gives the percentage of projects
which were predicted with a MRE less than or equal to 0.25.

TABLE II COMPARISON OF PERFORMANCE BETWEEN BPN MODEL AND
COCOMO

Fig. 1. MRE graph.

Fig. 1 depicts comparison made between 85 results

produced by test data for proposed model and corresponding
data set for COCOMO as well. We can observe by the Fig.-1
that MRE by proposed model is always kept near to the mean
of MRE which shows the accuracy of the model. But in case
of COCOMO, there are few spikes with high MRE which
show the inconsistency in the evaluation of efforts.

Fig. 2. Effort comparison graph.

Fig. 2 shows the efforts applied with each project during

its development. In our case we considered three different
sets of efforts that are actual results obtain from NASA
datasets, COCOMO results calculating by NASA input data
sets, and proposed results are calculated NASA input data
sets.

274

International Journal of Innovation, Management and Technology, Vol. 3, No. 3, June 2012

VII. CONCLUSION
This paper presented a new model for handling

imprecision and uncertainty by using the artificial neural
network system. This work has further shown by evaluating
algorithmic and non algorithmic software effort estimation
models that accurate effort estimation is possible. The
proposed model showed better software effort estimates in
view of the MMRE, Pred(0.25) evaluation criteria as
compared to the traditional COCOMO.

It can be observed in Fig.-2 that most of the efforts
calculated by proposed models are overlapping with two
other methods generated results, which demonstrates that
applying proposed model to the software effort estimation is
a feasible approach to address the problem of uncertainty and
vagueness in software effort drivers. Furthermore, the
proposed model presents better estimation accuracy as
compared to the NASA dataset. The utilization of soft
computing approach for other applications in the software
engineering field can also be explored in the future.

REFERENCES
[1] Parvinder S. Sandhu, Porush Bassi, and Amanpreet Singh Brar,

“Software effort estimation using soft computing techniques,” World
Academy of Science, Engineering and Technology pp 46 2008..

[2] Iman Attarzadeh and Siew Hock Ow, “A novel algorithmic cost
estimation model based on soft computing technique,” Journal of
Computer Science 6 (2): 117-125, 2010..

[3] B. W. Boehm, “Software engineering economics,” Englewood Cliffs,
NJ: Prentice-Hall, 1981.

[4] C. E. Walston and C. P. Felix, “A method of programming
measurement and estimation,” IBM Systems Journal, vol. 16, no. 1, pp.
54 73, 1977.

[5] G. N. Parkinson, Parkinson's Law and Other Studies in Administration,
Houghton-Miffin, Boston, 1957.

[6] L. H. Putnam, “A general empirical solution to the macro software
sizing and estimating problem,” IEEE Trans. Soft. Eng., pp. 345-361,
July 1978.

[7] J. R. Herd, J.N. Postak, W.E. Russell, and K.R. Steward, “Software
cost estimation study: Study results, final technical report,”
RADCTR77- 220, vol. I, Doty Associates, Inc., Rockville, MD, pp.
1-10, 1977.

[8] R. E. Park, PRICE S, “The calculation within and why,” Proc. of ISPA
Tenth Annual Conference, Brighton, England, pp. 231-240, July 1988.

[9] R. K. D. Black, R. P. Curnow, R. Katz, and M. D. Gray, BCS Software
Production Data, Final Technical Report, RADC-TR-77-116, Boeing
Computer Services, Inc., March, pp. 5-8, 1977.

[10] R. Tausworthe, “Deep space network software cost estimation model,”
Jet Propulsion Laboratory Publication 81-7, pp. 67-78, 1981

[11] W. S. Donelson, “Project planning and control,” Proc. Datamation, pp.
73- 80, June 1976.

[12] B. Boehm, C. Abts, and S. Chulani, 2000. Software development cost
estimation approaches-A survey. Ann. Software Eng., 10: 177-205.
DOI: 10.1023/A: 1018991717352.

[13] B. Boehm, 1995. “Cost models for future software life cycle processes:
COCOMO 2.0. Ann. Software Eng. 1: 45 60.”

[14] L. H. Putnam, 1978. “A general empirical solution to the macro
software sizing and estimating problem,” IEEE Trans. Software Eng., 4:
345-361. http://portal.acm.org/citation.cfm?id=1313641.

[15] Z. Fei and X. Liu, f-COCOMO: Fuzzy constructive cost model in
software engineering, Proc. IEEE International Conference on Fuzzy
Systems, San Diego, CA., USA.,Mar. 8-12 1992, pp: 331-337. DOI:
10.1109/FUZZY.1992.258637.

[16] K. Srinivasan and D. Fisher, 1995, “Machine learning approaches to
estimating software development effort,” IEEE Trans. Software Eng.,
21: 126-137. DOI: 10.1109/32.345828.

[17] A. Idri, A. Zahi, and A. Abran, “Software cost estimation by fuzzy
analogy for web hypermedia applications,” Proc. the International
Conference on Software Process and Product Measurement,
(SPPM’06), Cadiz, Spain, 2006, pp: 53-62.

[18] H. Liu and L. Yu, 2005. “Toward integrating feature selection
algorithms for classification and clustering,” IEEE Trans. Knowl. Data
Eng., 17: 491- 502. DOI: 10.1109/TKDE.2005.66.

[19] A. R. Venkatachalam, “Software cost estimation using artificial neural
networks,” Proc. of the 1993 International Joint Conference on Neural
Networks", IEEE Xplore Press, USA. 1993, pp: 987-990. DOI:
10.1109/IJCNN.1993.714077.

[20] S. A. Kumar, Krishna and P. Satsangi, 1994. Fuzzy systems and neural
networks in software engineering project management. J. Applied Intel.,
4: 31-52. DOI: 10.1007/BF00872054.

[21] A. C. Hodgkinson and P. W. Garratt, “A neurofuzzy cost estimator,”
Proc.of the 3rd International Conference on Software Engineering and
Applications, (SEA’99), ePrint, pp: 401- 406.
http://eprints.ecs.soton.ac.uk/2659/.

[22] C. J. Burgess and M. Lefley, 2001, Can genetic programming improve
software effort estimation? A comparative evaluation. Inform.
Software Technol., 43: 863-873. DOI:
10.1016/S0950-5849(01)00192-6.

[23] Z. Xu and T. M. Khoshgoftaar. “Identification of fuzzy models of
software cost estimation,” 2004.

[24] J. H. Holland, Adoption in Natural and Artificial Systems, Ann Arbor:
University of Michigan Press, 1975.

Brajesh Kumar Singh is presently doing Ph.D. from
MNNIT, Allahabad, India, under the guidance of
Prof. A.K.Misra, Department of Computer Science &
Engineering. He is working as Reader in Computer
Science & Engineering at FET, RBS College, Agra,
India. He has few national and international research
papers including IEEE publications. He is the
member of international associations in the field of
soft computing and software engineering.

275

International Journal of Innovation, Management and Technology, Vol. 3, No. 3, June 2012

	组合 1
	237-D0283

