
  
Abstract—The paper outlines a crisp and critical survey of 

the development of the theory of categories. We show that the 
theory originally arose in mathematics out of the need of 
formalism to describe the passage from one type of 
mathematical structure to another, and later became an 
autonomous field of research that has now occupied a central 
position in most of the branches of mathematics, some areas of 
theoretical computer science and mathematical physics. 
 

Index Terms—Axiomatic, category, computational. 
 

I. INTRODUCTION 
In 1942, Samuel Eilenberge and Saunders Maclane 

presented a paper introducing Specific Functors and Natural 
Transformation at work, particularly confined to the study 
of groups. Later in 1945, they presented another paper titled 
General Theory of Natural Equivalence introducing 
Categories, Functors and Natural Transformations as part of 
their work in topology, especially algebraic topology. Their 
goal was to understand natural      transformation for which 
the notion of functors and that of categories were exploited. 
Category theory can also be seen in some sense as a 
continuation of the work of Emmy Noether, one of 
MacLane’s teachers, on formalizing abstract processes. 
Noether realized that in order to understand a type of 
mathematical structure, one needs to understand the 
processes preserving that structure. In order to achieve this 
understanding, Eilenberg and MacLane proposed an 
axiomatic formalization of the relation between structures 
and the processes preserving them. This indicates that 
category theory originally arose in mathematics out of the 
need of formalism to describe the passage from one type of 
mathematical structure to another. Initially, it was not clear 
whether the theory of category would turn out to be more 
than just a convenient language which indeed was the case 
for about ten years. This perspective altogether changed 
when categories started getting used in homology theory 
and homological algebra. In this connection, Maclane and 
Grothendieck independently described categories in which 
the collections of morphisms between two fixed objects 
were shown to have an additional structure. More 
specifically, it was shown that given two objects X and Y of 
a category C, the set Hom(X,Y) of morphisms form an 
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abelian group [1].   
Also for reasons related to the ways homology and 

cohomology theories were linked, the definition of a 
category had to satisfy an additional formal property which 
led to the definition of a category that is now being 
commonly used. In the 1960s, Lambek proposed to describe 
categories as deductive systems. He begins with the notion 
of a graph consisting of two classes, Arrows and Objects, 
and two mappings between them, s: Arrows → Objects and 
t: Arrows → Objects, namely the source and the target 
mappings. The arrows are usually called the oriented edge 
and the objects nodes or vertices.  

With these developments, category theory became an 
autonomous field of research. Indeed, along with its rapid 
growth as a branch of mathematics, after the appearance of 
Lawvere’s Ph.D. thesis in universal algebra, it started 
getting used in computer Science. However, it still remains 
to be seen whether category theory should be taken as an 
alternative to set theory.  Briefly, a category is an 
algebraic structure consisting of a collection of objects, 
linked together by a collection of arrows (morphisms) that 
have two basic properties: the ability to compose the arrows 
associatively and the existence of an identity arrow for each 
object. Objects and arrows may be comprehended as 
abstract entities. 

In fact many branches of modern mathematics can be 
described in terms of categories; for example, category of 
sets, category of relations, category of groups, etc., and most 
importantly, doing so often reveals deep insights and 
similarities between seemingly different areas of 
mathematics. The study of categories can be seen as an 
attempt to axiomatically comprehend what is 
characteristically common in various classes of related 
mathematical structures by way of relating those exploiting 
structure-preserving functions between them.  

In view of the fact that a computer is not good at viewing 
concrete diagrams, category theory is being extensively 
used in computer science mainly because it offers a 
constructive mathematical structure to describe an object.  
Category theory has come to occupy a central position in 
most of the branches of mathematics, some areas of 
theoretical computer science where they correspond to types 
(a data type is a set of data with values having predefined 
characteristics like integer or floating point, usually a 
limited number of such data are build into a language and 
this corresponds to a category), and mathematical physics 
where categories are used to describe vector spaces. The 
notion of category generalizes those of a preorder and 
monoid and as well provides unification within set 
theoretical environment, thereby organizing and unifying 
much of mathematics. By now it has emerged as a powerful 
language or a conceptual framework providing tools to 
characterize the universal components of a family of 
structures of a given kind and their relationships. Summarily, 
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category theory can be regarded as a mathematical theory of 
structures. 

In addition, we invariably encounter with systems which 
contain objects with repeated elements or attributes (for 
example, groups of people, systems of elementary particles, 
etc., having two or more elements with the same property).  
We need a (formal) mathematical structure to model this 
kind of data. In the recent years such mathematical 
structures have been developed which are in general called 
multiset-based structures. Note that a multiset is a collection 
of objects in which repetition of elements is considered 
significant. Accordingly, sets are merely special instances of 
multisets.  

Applications of multisets abound, especially in 
mathematics and computer science [2], [3]. Typically, 
multisets have been used in data base theory, membrane 
computing, etc. For example, in membrane computing, each 
membrane can be viewed as a collection of objects 
appearing in multiple copies.  

Recently, considering the applications of multisets, on the 
one hand, and that of categories on the other, categories of 
multisets are being studied. 

  

II. THE DEVELOPMENT OF THE THEORY OF 
CATEGORIES  

Categories were first introduced in course of formulating 
algebraic topology, specifically with Samuel Eilenberg’s 
observation that Saunders Maclane’s calculations on a 
specific case of a group extension coincided precisely with 
Norman Steenrod’s calculation of the homology of a 
solenoid. Eilenberg and Maclane’s effort to make sense of 
this coincidence across apparently distinct areas of 
mathematical inquiry gave rise to introducing category 
theory. The central notion at work was that of natural 
transformations. In order to provide a broad mathematical 
perspective, the notion of functor was introduced for which 
they borrowed the term category from the philosophical 
writings of Aristotle, Kant and reiterated in C. S. Peirce.                                                      

Emmy Noether (one of Maclane’s teachers), in 
formalizing abstract processes, realized that understanding 
of a mathematical structure in its proper perspective could 
be better achieved through a proper understanding of the 
processes preserving that structure. Maclane and Eilenberg 
proposed an axiomatic formalization of the relation between 
structures and the processes preserving them, which is 
considered as a first sustained formalization of Noether’s 
intuitive notion of the concept of category. 

In 1945, Eilenberg and Maclane define category C as an 
aggregate Ob of abstract elements, called the objects of C 
and abstract elements Map, called mappings of the category. 
The term Map is characterized as follows:   

(C1) Given three mappings α1, α2, α3, the triple product 
α3 (α2α1) is defined if and only if (α3α2)α1 is defined. That is, 
whenever either is defined, the associative law α3 (α2 α1) = 
(α3 α2) α1 holds. This triple product is often written as α3α2α1.  

(C2) The triple product α3α2α1 is defined whenever both 
the products α3α2 and α2α1 are defined.  

(C3) For each mapping α, there is at least one identity ℓ1 

such that αℓ1 is defined and at least one identity ℓ2 such that 
ℓ2α is defined. 

(C4)  The mapping ℓx corresponding to each object X is 
an identity. 

(C5)For each identity ℓ there is a unique object X of C 
such that ℓx = ℓ.  

It is remarked that objects play a secondary role and 
could be entirely done away from the definition; however, it 
would make the manipulation of the applications less 
convenient. In fact the definition of category formulated by 
Eilenberg and Maclane emerged as a helping tool to provide 
an explicit and rigorous formulation of the notions of 
functors and natural transformations. 

The theory of category which is called a mathematical 
universe was developed from some basic definitions of 
maps, composition and algebra of composition, and further 
defined as a system consisting of:  

(i) Objects and maps.  
(ii) For each map f, one object as domain and one object 

as codomain.   
(iii) For each object A, an identity map consisting A as 

domain and codomain.             
(iv) A composite map gf: A → C for each pair of maps f: 

A → B, g: B → C satisfies identity and associativity laws 
[4].  

Category theory interacts with nearly everything; it is a 
remarkable empirical fact that the important structural 
properties of mathematical objects are often expressible in 
category-theoretic terms, specifically as a universal property. 
For better understanding of category theory, a survey on the 
ways category theory interacts with set theory was carried 
out. It is observed that many of the elementary concepts of 
category theory were introduced for the purpose of 
expressing familiar concepts of set theory and their 
generalizations in other areas of mathematics [5]. Categories 
were mostly described in terms of objects and arrows. On 
another view which is interesting, it is observed that 
morphism is the central concept in a category, and a 
category C is defined as consisting of the collection MorC of 
the morphisms of C. Objects of C are associated with 
identity morphisms 1A, since 1A is unique in each set 
MorC(A, A) and uniquely identifies the object A [6]. On a 
similar view the theory is described as a collection of maps 
which have a partial associative multiplication and a system 
of units. This indicates that the objects are actually 
redundant structure and their role can be replaced by the 
identity maps. It is further remarked that categories and 
functors form a category called Cat [7]. In another 
development, a category C is defined as a graph together 
with two functions c: C2 → C1 and u: C0 → C1. The 
elements of C0 are called objects and those of C1 are called 
arrows. The function c is called composition and if (g,f) is a 
composable pair, c(g,f) is written g o f and is called the 
composite of g and f. If A is an object of C, u(A) is denoted 
idA, called the identity of the object A. 

The source of g o f is the source of f, and the target of g o 
f is the target of g.  

The following hold:  
(h o g) o f = h o (g o f), whenever either side is defined.    
The source and target of idA are both A.   
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If f: A → B, then f o idA = idB o f = f.  
Functional Programming Languages are described as 

Categories [8]. Category theory is being studied from 
applications point of view, specifically within algorithmics 
(problem solving).  It is observed that the language of 
category theory facilitates providing an elegant style of 
describing expressions and proof (equation reasoning) for 
use in algorithmic. This happens to be reasoning at the 
functional level without the need (and the possibility) to 
reduce arguments explicitly. The equational formulas often 
lead to a far-reaching generalization much more than the 
usual set-theoretic formulations. A category is defined as a 
data characterized as follows: 

 

III. THE DATA  
(i) A collection of things called objects. By default, A, B, 

C,...,X,Y,Z,... vary over objects.   
(ii) A collection of things called morphisms, sometimes 

called arrows. By default,   f, g, h, ..., and later on, also α, β, 
φ, ψ, χ, ..., vary over morphisms. The collection of all 
arrows of a category C is sometimes denoted ArrC.  

(iii) A relation on morphisms and pairs of objects called 
typing of the morphisms. By default, the relation is denoted 
f: A → B for morphism f and objects A, B. Here, A is the 
domain and B the codomain of f: A → B. 

(iv) A binary partial operation on morphisms called 
composition. By default, f; g is the notation of the 
composition of morphisms f and g. An alternative notation 
is gof or gf.   

(v) For each object A, a distinct morphism called identity 
on A. By default, idA, or id when A is clear from the context 
denotes the identity on object A. 

 

IV. THE AXIOMS  
There are three typing axioms and two axioms for 

equality. The typing axioms:   
(T1) f: A → B and f: A′ → B′ implies 
A = A′ and B = B′.                (Unique – Type)  
(T2) f : A → B  and g : B → C  implies   
f ; g : A → C.                       (Composition – Type)   
(T3) idA: A → A. (Identity – Type)  
A morphism term f is called well-typed if, a typing  
f: A → B can be derived for some objects A, B according 

to the aforesaid axioms. 
 

V. AXIOMS FOR EQUALITY OF MORPHISMS  
(E1) (f ; g) ; h =f ;(g; h)  
(Composition –Assoc.)  
(E2) id ; f = f = f ; id (Identity)  
Also, whenever a term is written it is assumed that the 

variables are typed (at their introduction-mostly an implicit 
universal quantification in front of the formula) in such a 
way that the term is well-typed. This allows us to simplify 
the formulations considerably, as illustrated in the axioms 
for equality of morphisms above [9].    

A category K is also defined as a pair (ob(K), mor(K)) of 
generic objects A,B,... in ob(K) and generic arrows f: A → 
B, g: B → C,... in mor(K) between objects, with associative 
composition and identity (loop) arrow. It is observed that 
the theory was born with an observation that many 
properties of mathematical systems could be unified and 
simplified by a presentation with commutative diagrams of 
arrows [10]. A Category C is defined as consisting of the 
following: 

(i)a collection ObjC of objects A,B,C, ... , X,Y,Z, ..., 
(ii)a collection C(A,B) of arrows  f: A → B  from A to B 

for each pair of objects A and B., 
(iii)for each object  A, an identity arrow idA : A → A.,  
(iv)for each pair of arrows f : A → B, g: B → C, a 

composite arrow g o f: A → C. These data satisfy the 
following generalised monoid laws:  

1. Identity: If f:  A → B then   idB o f = f o idA     

2. Associativity: If f: A → B, g: B → C and h: C → D 
then  

(h o  g) o  f = h o  (g o  f).       
The theory is considered as the mathematical study of 

universal properties and that, it brings to light, makes 
explicit, and abstracts out the relevant structures often 
hidden in following traditional approaches. It also looks for 
the universal properties holding in the categories of 
structures one is working with. A monoid is a category with 
only one object and a pre-order is a category with at most 
one arrow between every two objects are most simple 
examples of categories [11]. Every directed graph can be 
made into a category where the objects are the vertices of 
the graph and the arrows are paths in the graph [12]. A 
Poset (P, ≤) can be regarded as a category P with the set of 
object P, along with the provision that if   x, y ∈ P, then P(x, 
y) consists of exactly one morphism if x ≤ y and is empty 
otherwise. Moreover, this shows that every set can be 
viewed as a discrete category i.e., a category where the only 
morphisms are the identity morphisms [13]. The theory is 
also defined as consisting of the following:  

(i) a class Ob(C) of objects of C.,  
(ii) a family Mor(C) associating with every pair A,B ∈ 

Ob(C), a class Mor(C)(A,B) of morphisms from A to B.,  
(iii) for all A,B,C∈Ob(C), a mapping  oA,B,C: Mor(C)(B,C) 

× Mor(C)(A,B) → Mor(C)(A,C), called composition.,  
(iv) for A∈Ob(C) a distinguished morphism  

idA∈Mor(C)(A,A), called the identity morphism for A. 
These data satisfy the following:  

1.For all A,B,C∈Ob(C) and f∈Mor(C)(A,B), 
g∈Mor(C)(B,C) and h∈Mor(C)(C,D),  

 h o (g o f) = (h o  g) o f    
i.e., oA,C,D(h.oA,B,C(g.f)) = oA,B,D(oB,C,D(h.g).f).  
2.For all A,B,C∈Ob(C) and f∈Mor(C)(A,B) and 

g∈Mor(C)(C,A), f o idA = f and idA o g = g i.e.,  oA,A,B(f.idA) 
= f  and oC,A,A(idA.g) = g. 

Further, it is elaborated that a category whose objects are 
sets, whose morphisms from A to B are the set-theoretic 
functions from A to B and where composition is given by (g 
o f)(x) = g(f(x) ), is denoted Set. It follows that in Set, the 
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identity morphism idA takes every x∈A to itself [14].  
Using the usual first-order theory of category, eight first-

order axioms were adjoined to obtain an elementary theory 
of the category of sets which was shown to provide a 
foundation for mathematics, which is quite different from 
the usual set-theoretic formulation in the sense that much of 
number theory, elementary analysis, and algebra can be 
constructively developed within it [15]. In the process of 
describing the Grothendieck Universe (or just a universe), a 
category is defined as an algebraic object similar to a group 
or a ring. It is further elaborated that if we desire to talk 
about the category of all sets, all groups, all topological 
spaces, along with not allowing the paradox of too large 
sets (Russell’s Paradox) to appear, we need to introduce 
fancy set-theoretic ideas (like Grothendieck Universes: the 
full second order version of cumulative hierarchy) [16]. The 
connection between programming and category theory was 
illustrated while describing computational category theory. 
A category is defined as a graph (O,A,s,t) whose nodes O 
are called objects and edges A arrows. Associated with each 
object a in O, there is an arrow 

ia:a → a, the identity arrow a, and to each pair of arrows f: 
a → b and g:b → c, there is an associated arrow gf: a → c, 
the composition of f with g. The following equations must 
hold for all objects a, b, c and d, and arrows f:a → b, g:b → 
c and h: c → d, (hg)f = h(gf) and fia = f = ibf.  It is observed 
that category theory seems to operate on the same level of 
generality as logic and computer programming. The 
essential virtue of category theory is to provide suitable 
means for making definitions which is the programmer’s 
main task. Computer scientists are fascinated by category 
theoretic approaches because it is largely constructive. 
Theorems asserting the existence of objects are proven by 
explicit constructions. In this sense, category theory may be 
viewed as a warehouse of algorithms [17]. Category theory 
provides a means for organizing and classifying the 
relationships between mathematical concepts in 
mathematical models. It is emphasized that the theory of 
category is the language of mathematical concepts and 
relations and thereby making it the language of mathematics 
[18]. There are few contributions on category theory in 
multiset context. The first was in 1987 where multiset and 
multiset functions were noticed to determine a category 
naturally [19]. After sixteen years, a categorical model of 
multisets was described and, more so the idea that multiset 

and multiset morphisms form a category, denoted Mul was 
further elaborated [20].  
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